Exam 3-27 October 2017

Instructions

- You have until the end of the class period to complete this exam.
- You may use a calculator.
- You may not consult any other outside materials (e.g. notes, textbooks, homework).
- Show all your work. Your answers should be legible and clearly labeled. It is your responsibility to make sure that I understand what you are doing. You will be awarded partial credit if your work merits it.
- Keep this booklet intact.
- Do not discuss the contents of this exam with any midshipmen until it is returned to you.

Problem	Weight	Score
1	$1 \frac{1}{2}$	
2	1	
3	1	
4	1	
5	$1 \frac{1}{2}$	
6	$1 \frac{1}{2}$	
7	1	
8	$1 \frac{1}{2}$	
Total		$/ 100$

Problem 1. Let $f(x, y)=e^{x-y}$. Find an equation of the tangent plane to the surface $z=f(x, y)$ at $(2,2,1)$. Use your equation to approximate the value of $f(2.02,1.99)$.

Problem 2. Wine production W in a given year depends on the average temperature T and the annual rainfall R. Scientists estimate that the average temperature is rising at a rate of $0.15^{\circ} \mathrm{C} /$ year and rainfall is decreasing at a rate of 0.1 $\mathrm{cm} /$ year. They also estimate that at current levels, $\partial W / \partial T=-2$ and $\partial W / \partial R=8$.
Estimate the current rate of change of wine production.

For Problems 3-4, consider the contour map for the function f shown below.

Problem 3. Estimate the directional derivative of f at $(4,7)$ in the direction $\langle-1,1\rangle . \underline{\text { Briefly explain. }}$

Problem 4. Draw the direction of the gradient at $(10,4) . \underline{\text { Briefly explain. }}$

Problem 5. Let $f(x, y)=x^{2} \ln y$. Find the rate of change of f from the point $P(3,1)$ towards the point $Q(-2,13)$.

Problem 6. Find parametric equations of the line normal to the surface $x=y^{2}+z^{2}+1$ at $(3,1,-1)$.

Problem 7. Let $f(x, y)=x^{2}+y^{2}+x y+y$. The only critical point of f is $(1 / 3,-2 / 3)$. Find the local minimum values, the local maximum values, and the saddle points of f.

Problem 8. Find all of the critical points of $f(x, y)=x^{2}+y^{4}+2 x y$.

