Name:

Exam 3 - 27 October 2017

Instructions

- You have until the end of the class period to complete this exam.
- You may use a calculator.
- You may not consult any other outside materials (e.g. notes, textbooks, homework).
- Show all your work. Your answers should be legible and clearly labeled. It is your responsibility to make sure that I understand what you are doing. You will be awarded partial credit if your work merits it.
- Keep this booklet intact.
- Do not discuss the contents of this exam with any midshipmen until it is returned to you.

Problem	Weight	Score
1	$1\frac{1}{2}$	
2	1	
3	1	
4	1	
5	$1\frac{1}{2}$	
6	$1\frac{1}{2}$	
7	1	
8	$1\frac{1}{2}$	
Total		/ 100

Problem 1. Let $f(x, y) = e^{x-y}$. Find an equation of the tangent plane to the surface z = f(x, y) at (2, 2, 1). Use your equation to approximate the value of f(2.02, 1.99).

Problem 2. Wine production *W* in a given year depends on the average temperature *T* and the annual rainfall *R*. Scientists estimate that the average temperature is rising at a rate of 0.15°C/year and rainfall is decreasing at a rate of 0.1 cm/year. They also estimate that at current levels, $\partial W/\partial T = -2$ and $\partial W/\partial R = 8$.

Estimate the current rate of change of wine production.

For Problems 3-4, consider the contour map for the function f shown below.

Problem 3. Estimate the directional derivative of *f* at (4,7) in the direction $\langle -1,1 \rangle$. Briefly explain.

Problem 4. Draw the direction of the gradient at (10, 4). Briefly explain.

Problem 5. Let $f(x, y) = x^2 \ln y$. Find the rate of change of *f* from the point P(3, 1) towards the point Q(-2, 13).

Problem 6. Find parametric equations of the line normal to the surface $x = y^2 + z^2 + 1$ at (3, 1, -1).

Problem 7. Let $f(x, y) = x^2 + y^2 + xy + y$. The only critical point of f is (1/3, -2/3). Find the local minimum values, the local maximum values, and the saddle points of f.

Problem 8. Find all of the critical points of $f(x, y) = x^2 + y^4 + 2xy$.